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ABSTRACT

The head-on collision of equal sized drops is studied by full numerical simulations.

The Navier-Stokes equations are solved for the fluid motion both inside and outside

the drops using a front tracking/finite difference technique. The drops are accelerated

toward each other by a body force that is turned off before the drops collide. When the

drops collide, the fluid between them is pushed outward leaving a thin layer bounded

by the drop surface. This layer gets progressively thinner as the drops continue to

deform and in several of our calculations we artificially remove this double layer once

it is thin enough, thus modeling rupture. If no rupture takes place, the drops always

rebound, but if the film is ruptured the drops may coalesce permanently or coalesce

temporarily and then split again.

I. INTRODUCTION

The dynamics of fluid drops is of considerable importance in a number of engineer-

ing applications and natural processes. The combustion of fuel sprays, spray painting,

various coating processes, as well as rain are only a few of the more common examples.

While it is often possible to focus attentionon the dynamic of a single drop and how

it interacts with the surrounding flow, it is necessary to account for the interactions



betweenthe dropsand their collectiveeffecton the flowwhenthe numberof dropsper
unit volume is high. The collisionof two dropsis anextremecaseof two drop interac-
tion and hasbeenthe topic of several investigations. The collision process generally

involves large deformations and rupture of the interface separating the drops, and

has not been amenable to detailed theoretical analysis. Previous studies are therefore

mostly experimental, but sometimes supplemented by greatly simplified theoretical

argument. Here, we present numerical simulations of the head-on collision of two

drops, where the full Navier-Stokes equations are solved to give a detailed picture of

the flow during collision.

Previous investigations of droplet collision have been motivated by raindrop for-

mation (Brazier-Smith, Jennings and Latham, 1972; Spengler and Gokhale, 1973,

and others), by efforts to predict the phase distribution in agitated liquid-liquid dis-

persions (Park and Blair, 1975), by concern about blade erosion due to dispersed

liquid drops in low pressure turbines (Ryley and Bennett-Cowell, 1967) and by fuel

spray behavior (Ashgriz and Givi, 1987). Recent experimental studies include those

of Azhgriz and Poo (1990), and Jiang, Umemura and Law (1992) who show several

sequences of photographs of the various mode of collision for both water and hydro-

carbon drop. Drop collisions can generally be classified into four main categories:

bouncing collision, where the drops collide and separate, retaining their identity; coa-

lescence collision, where two drops become one; separation collision, where the drops

temporarily become one but then break up again; and shattering collision, where the

impact is so strong that the drops break up into several smaller drops. The form of

the collision depends on the size of the drops, their relative velocities and the phys-

ical properties of the fluids involved. In addition to head-on collisions, off-centered

collisions (where the drops are displaced radially with respect to each other) is dis-

cussed by both Azhgriz and Poo and Jiang et al. Other investigations may be found

in Bradley and Stow (1978), Podvysotsky and Shraiber (1984) and Ashgriz and Givi

(1987), for example. The major goal of these investigations has been to clarify the

boundaries between the major collision categories and explain how they depend on

the properties of the problem. As the large differences between water drops and hy-

drocarbon drops, studied by Jiang et al., show, even the relatively simple case of head

on collisions of equal size drops is still not fully understood.

Previous theoretical investigations of drop behavior have almost all been concerned

with the oscillations of a single drop. The linear oscillations of inviscid drops are welt

understood (see e.g. Lamb, 1932) and several authors have looked at nonlinear effects.

Recent work includes analysis by Tsamopoulos and Brown (1983) and computations

by Patzek, Benner, Basaran and Scriven (1991). The decay of linear oscillations due



to viscosity wasanalyzedin anapproximatewayby Lamb (1932)in the limit of small
viscosity and a moredetailed analysiswaslater carriedout by Reid (1960),Miller and
Scriven(1968)and others. Numerical investigationsof viscouseffectscanbe found in
Foote (1973) who usedthe Marker And Cell (MAC) method to solvethe full Navier
Stokesequations,and Mansureand Lundgren (1988) who used a boundary integral

method, modified to account for small viscous dissipation in an approximate way.

The only simulation of drop collision that we are aware of is by Foote (1975)

who followed the evolution of rebounding drops at low Reynolds and Weber number

using the MAC method. The shapes computed by Foote have been compared with

experimental observations by Bradley and Stow (1978) who found good agreement,

but made the interesting observation that "this complicated treatment gives little

insight into the physical processes involved." Our simulations extend the work of

Foote, increasing the Weber number and exploring what happens when the drops
coalesce.

The rest of the paper is laid out as follows: In section 2 we discuss briefly the
numerical method which has been described in more detail elsewhere. Section 3

contains our results and section 4 is devoted to discussions. In section 5 we summarize

our results. Preliminary results have been presented at the 45 Annual Meeting of the

Fluid Dynamics Division of the American Physical Society (Nobari and Tryggvason,

1992).

II. FORMULATION AND NUMERICAL METHOD

The numerical technique used for the simulations presented in this paper is a front

tracking method for multi-fluid flows developed by Unverdi (1990) and discussed by

Unverdi and Tryggvason (1992 a,b). The actual code is an axisymmetric version of

the method, described in Jan and Tryggvason (1993). Here we only briefly outline

the procedure.

The physical problem and the computational domain is sketched in Figure 1. The

domain is axisymmetric and the drops are initially placed near each end of the domain.

A force is applied to the drops to drive them together and turned off before the drops

collide. Generally, the density and viscosity of the ambient fluid are much smaller

than of the drop fluid and thus have only a small effect on the results. While it is

therefore sufficient to solve only for the fluid motion inside the drop, here we solve

for the motion everywhere, both inside and outside the drops. The Navier-Stokes

equations axe valid for both fluids, and a single set of equations can be written for

the whole domain as long as the jump in viscosity and density is correctly accounted



for and surfacetensionis included. In componentform theseequationsare
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Here, v_ and v_ are the velocity components in the axial and radial direction, p is the

pressure, and p and # are the discontinuous density and viscosity fields, respectively.

F_ is the surface tension force and fz is a body force. Notice that the surface tension

force has been added as a delta function, only affecting the equations where the

interface is. The detailed form of F_ will be discussed below. The above equations

are supplemented by the incompressibility conditions

10 0

+ = 0

which, when combined with the momentum equations leads to a non-separable elliptic

equation for the pressure, and equations of state for the density and viscosity:
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These last two equations simply state that density and viscosity within each fluid
remains constant.

Nondimensionalization gives a Weber and a Reynolds number defined by:

We pddU2 pdUd= _; Re -
o #d

In addition, the density ratio Po/Pd and the viscosity ratio #o/#d must be specified.

Here, d is the drop diameter. The subscript d denotes the drop fluid and o the

ambient fluid. When presenting our results we scale lengths by the initial diameter

of the spherical drop and velocity by V = U/2, the speed of one drop before impact.
To nondimensionalize time we have the choice of two inherent time scales: One is the

advection time d/V of the drops before impact and the other is the natural oscillation

time for the drop rd = (Tr/4)_--/cr. While most of our results are presented using

the advective time scale, in some cases the latter is the more natural one (as pointed

out already by Foote, 1975). In a few cases we therefore replot our results using this
time scale.



The force usedto drive the drops together initially is taken as

f_ = A(p- po)sign(z- zc)

so the force acts only on the drops. Here A is an adjustable constant and zc is midway

between the drops. This force is turned off before the actual collision takes place. In

most of our simulations the drops are initially put about one diameter apart (two

diameters between their centers) and A is varied to give different collision velocities.

To make comparison between various runs easier, we set time equal to zero when the

centers of the drops are one diameter apart. If the drops were exactly spherical, they

would touch at this instant. In our case, since the drops are moving in an other fluid,

they have generally deformed slightly before impact and there is therefore a layer of

ambient fluid between them at this time.

To solve the Navier-Stokes equations we use a fixed, regular, staggered grid and

discretize the momentum equations using a conservative, second order centered dif-

ference scheme for the spatial variables and an explicit first order time integration

method. We have used second order time integration in other problems and generally

find little differences for relatively short simulations times as those of interest here.

The effect does show up in long time simulations and is usually accompanied by a fail-

ure to conserve mass. In the computations discussed here, mass is always conserved

within a fraction of a percent. The interface is represented by separate computational

points that are moved by interpolating their velocity from the grid. These points are

connected to form a front that is used to keep the density and viscosity stratification

sharp and to calculate surface tension forces. At each time step information must be

passed between the front and the stationary grid. This is done by a method that has

become known as the Immersed Boundary Method and is based on assigning the in-

formation carried by the front to the nearest gridpoints. While this replaces the sharp

interface by a slightly smoother grid interface, all numerical diffusion is eliminated

since the grid-field is reconstructed at each step.

The original Immersed Boundary Method was developed by Peskin and collabo-

rators (see e.g. Peskin 1977) for homogeneous flows. The extension to multi-fluid

flows includes a number of additional complications. The first is that density now

depends on the position of the interface and has to be updated at each time step.

There are several ways to do this but we use a variant of the method developed by

Unverdi (1990) where the density jump at the interface is distributed onto the fixed

grid to generate a grid-density-gradient field. The divergence of this field is equal to

the Laplacian of the density field and the resulting Poisson equation can be solved

efficiently by a Fast Poisson Solver. The particular attraction of this methods is that

close interfaces can interact in a very natural way, since the grid-density-gradients



simply cancel. Therefore, when two interfaces come close together the full influence

of the surface tension forces from both interfaces is included in the momentum equa-

tions, but the mass of the fluids in the thin layer between the interfaces--which is very

small--is neglected. A second complication is that the pressure equation now has a

nonconstant coefficient (or is non-separable) since the density varies. This prevents

the use of Fast Poisson Solvers based on Fourier Methods, or variants there of, and

we have used a multigrid package, MUDPACK, from NCAR (see Adams, 1989, for a

description) with slight modifications due to our staggered grid.

The computation of the surface tension forces poses yet another difficulty. Gener-

ally, curvature is very sensitive to minor irregularity in the interface shape and it is

difficult to achieve accuracy and robustness at the same time. However, by computing

the surface tension forces directly by

Fs = a f_s

Os

 ds,

where s is the tangent vector, we ensure that the net surface tension force is zero, or:

/ a_nda = O.

Here, n is the outward normal and _ is the mean curvature. This is important for

long time simulations since even small errors can lead to a net force that moves the

drop in an unphysical way.

Lastly, contrary to previous computations with the Immersed Boundary Method,

the interface deformes greatly in our simulations and it is necessary to add and delete

computational elements during the course of the calculations. While this is a major

task for fully three-dimensional simulations, here the interface is simply a line and

such modifications are a simple matter.

The method and the code has been tested in various ways, such as by extensive grid

refinement studies, comparison with other published work and analytical solutions

(for details see Jan, 1993 and Nobari, 1993). Generally, both analytical solutions and

other simulations are limited to relatively simple cases. We include one test in figure

2 where we compare the oscillations of a single drop with analytical predictions. Here

a single drop is perturbed slightly by the fundamental mode. The drop oscillates

and the amplitude of the fundamental mode is plotted in the figure. The oscillation

period is close to what is predicted by Lamb (formula number 10 on page 475) with

tcompute/rd = 1.03, and the decay compares also well with formula 12 on page
641 in Lamb. The envelope for the oscillations, as computed by Lamb's equation is

plotted in figure 2. We have compared several cases and find, as expected, that as the



perturbation amplitude and the viscositybecomessmaller,fully resolvedsimulations
give results in closeagreementwith the theoretical predictions. For large amplitude
perturbations, the oscillation frequencyis alsowell predicted by Lamb's formula, if
the diameter of a sphereof the samevolumeas the drop is used.

III. RESULTS

We have computed a large number of collisions and in this section we show several

results. First we consider collisions where the interface between the drops is not

ruptured, and then we discuss collisions with interface rupturing.

A. Bouncing drops

Figure 3 shows the collision of two drops, at several times. Here, We = 32,

Re = 98, Pd/Po = 15, and #d/#o = 350. Initially, a constant force acts on the drops to

accelerate them toward each other. When the drops are about half a diameter apart,

the force is turned off, but the drops have acquired enough momentum to continue

toward each other and collide. As the drops come in contact, the fluid between them

is squeezed away and the drops bulge out at the equator of the combined fluid mass.
The bulk of the fluid continues to move forward and then outward to the rim of the

drop--which is now more disk-like---thus resulting in an indentation in the middle.

Surface tension eventually inhibits further outward motion of the rim and forces the

fluid back toward the axis of symmetry. While kinetic energy is converted into surface

tension energy during the initial deformation, the reversed motion converts surface

tension energy back into kinetic energy and the drops rebound since the interface

between the drops is not allowed to rupture.

This calculation was done on a uniform grid with 64 by 256 meshes in the radial

and axial direction, respectively. To show that this is an essentially fully converged

solution we compare selected frames from the run in figure 3 with computations done

on a coarser, 32 by 128, grid in figure 4. The most significant difference is that the

coarsely resolved drops have moved slightly less apart than the well resolved ones,

suggesting slightly larger loss of energy for low resolution. For all our simulations

we have monitored the volume conservation of the drops (not explicitly enforced in

the code) and found that even for collisions involving severe deformations the volume

change is always less than a fraction of a percent.

In figure 5 we show the time evolution of various quantities for the run in figure

3. In (a) and (b) we show the position of the center of mass for the drop and the

velocity of the center of mass, respectively. For reference, a horizontal line is drawn one



drop radius from the symmetry plane in (a), and if the drops remainedsphericalthey
would not touch oncethe centerof massis abovethis line. In reality the dropsdeform
slightly before colliding and elongateafter collision. The drops are set in motion by
a constant force and the velocity in (b) thereforeincreaseslinearly. Oncethe force is
turned off, the drops slow down slightly due to the drag from the surrounding fluid,
and after collision the drops return to a steadymotion with a velocity that is about
half of their velocity beforecollision.

In 5(c) we plot the nondimensionalmaximum diameter of the drop, and its de-
formation, definedasthe ratio of maximum diameterdivided by the thicknessof the
drop on the symmetry axis. While the drops are squashedtogether during the colli-
sion, they are elongatedduring rebounding. Notice that the radius doesnot start to
increaseuntil well into the collision and that the deformationcurve is not symmetric
about its peak, illustrating that the initial squashingis considerablyslowerthan the
subsequentrecovery.The energybalanceduring the collision is shownin figure 5(d)
where the kinetic energyof the drop and the surfacetension energy,alongwith the
total energy of the drop, is plotted versus time. Initially, only the kinetic energy
increasesas the drops are set in motion by the applied force field. When the force
field is turned off, the energy decreasesslightly due to viscous dissipation. During
the collision the kinetic energyis convertedinto surfacetensionenergy,which reaches
maximum at the maximum drop deformationwhen the kinetic energyis nearly zero.
Notice the rapid decayin the total energyduring the initial stageof the collisionwhen
the drops becomeflatter; the "pause" in the dissipation at maximum deformation,
and again the rapid dissipation when the drops recovertheir sphericalshape. In the
particular caseshownhere, the total energydissipation is divided unequallybetween
the initial deformation phaseand the recoveryphase,with larger dissipation taking
place during the recovery stage. After the drops rebound, the surfaceand kinetic
energy curvesare slightly wavy, due to the oscillations of the drops and the total
energydecreasesat a rate comparablewith the decaybefore collision. Comparing 5
(a), (b), (c), and (d) we seethat the maximum surfaceenergy coincideswith zero
centroid velocity, but the maximum deformationoccursslightly later sincethe drops
continue to becomethinner in the center,evenafter the outward motion hasstopped.

Drops colliding with solid surfacescan causeextensive damage, and since the
drops in figure 3 are of the samesize, they behaveas a drop colliding with a non-
wetting, full-slip surface.Although real surfacesare not full-slip, it is likely that the
differencesare small at high Reynolds numbers. Figure 5e showsthe force on the
symmetry planecomputedby integrating the pressureover the areawherethe drops
touch. Notice that the maximum force coincideswith the point wherethe centersof



massare closestand that the maximum force is more than twice the averageforce.
We have also estimated the averageforceby dividing the impulseneededto change
the momentumof the drop by the collision time and find good agreement.

To get additional insight into the collision process,we plot the velocity vectors
inside the drop, aswell asthe streamlinesfor the wholeflow field, at severaltimes, in
figure 6. The velocity vectorsareto the right and (the mirror imageof) the streamlines
on the left. In the first frame the drops havecollided and while the fluid in most of
the drop is still moving forward with uniform velocity, the fluid in a small regionnear
the collision plane, is moving outward. The forward motion of the drops has induced
a circulation in the whole fluid domain leading to closedstreamlines. In the outer
fluid, near the drop surfacethere is athin shear,visibleasa "kink" in the streamlines.
In the next frame, the regionwhere the velocity is uniform and the streamlinesare
straight hasnearly disappearedas more and more of the fluid is squeezedoutward.
Near the rim of the resulting disk the outward velocity eventually goesto zero,and
in the third frame the outer rim is starting to flow inward, eventhough the middle
of the disk is still getting thinner (the droplet neverbecomescompletely stationary,
thus the kinetic energy is neverexactly zero). This reversedflow regioncontinuesto
grow and in the fourth frame the flow is dominatedby a large recirculation regionof
opposite circulation to the initial one. This developmentcontinuesin the next two
frames as the drops rebound. Since the flow near the walls of the domain is now
toward the collision plane, a small reminder of the fluid with the original circulation
accumulatesnear the outer walls. Notice that the flow field during recoveryis not
simply the reverseof the initial flow. While the drop wasgetting flatter, considerable
amount of the drop fluid remainedin uniform motion during a large fraction of the
collision phase;during recoverythe streamlinesbend moreuniformly.

The pressurefield inside the drops,at the sametimes as in figure 6, is plotted in
• figure 7. Because of finite resolution, the pressure is not exactly discontinuous across

the interface, but changes smoothly over two to three grid spaces. For relatively fine

resolution, as is the case here, this transition zone is thin. Initially, the pressure is

nearly uniform within the drops, but as the drops collide and are brought to a halt,

the pressure on the centerline, at the point of contact, increases. As the contact

region increases the high pressure area moves to the rim of the disc, and at maximum

deformation, when the drop is nearly stationary, the pressure is highest in the outer

torus, where the curvature is highest. This high pressure drives the flow back during

rebounding and as the drops separate the high pressure region is again on the contact

plane. Here the drops are elongated during separation and the pressure is therefore

highest near the ends where the curvature is highest. Notice that the vertical scale



in eachframe is different.
In laboratory experiments, bouncing is actually rather rare and drops generally

coalescewhen the film betweenthem ruptures. The time of rupture dependson how
fast fluid is drained out of the film and while wedonot attempt to resolvethe thin film,
the computations give information that could be usedto predict the drainagetime.
/,From figure 3 and 4, it is clear that the area where the drops are in contact (separated

only by a thin film) is well defined and not sensitive to the resolution. In figure 8a, we

plot the radial position of the outer edge of this area versus time. In figure 8b we plot

the pressure in the symmetry plane versus radius at several times. The earliest line,

at t=0.2, corresponds to the second frame in figure 7. Here, the pressure is nearly

uniform across the line of contact. As the drops become flatter the pressure on the

centerline falls rapidly, but the pressure near the rim of the disk increases. This high

pressure near the rim eventually forces the fluid back, again increasing the centerline

pressure. As the drops rebound the centerline pressure becomes nearly uniform over

the plane of contact and decreases. The radial velocity in the symmetry plane is

plotted in figure 8c for the same times as in figure 8b. Initially, the velocity is nearly

a linear function of radius, but then the fluid near the rim slows down and starts

to flow back while the velocity near the center is still positive. Near the end of the

collision, the velocities are again nearly linear, but now in the inward direction. This

velocity is taken directly from the simulations in figure 3 and since the film is many

times smaller than the grid spacing, this velocity is not affected by the properties

of the film fluid. If the radial velocity in the film was different, one would expect a

boundary layer inside the drop to match this velocity.

Experimental observation suggest that the effect of the Reynolds number is small,

once it is high enough. Although our Reynolds numbers are somewhat lower than

those often encountered experimentally, we find a similar trend. In figure 9 we com-

pare the results for a single Weber number and three Reynolds numbers. (The case

shown in figure 3 has the same Weber number and is also included in the compar-

isons made in figure 10 and 11.) Except for the very lowest Re, the solutions are

quite similar. A more detailed comparison is given in figure 10 where the energies are

plotted versus time. (Since the Weber numbers are not exactly identical, the curves

do not coincide completely at time zero.) In all cases, the kinetic energy is reduced

at nearly the same rate, but the rate of increase in surface tension energy is the same

only for the two highest Reynolds numbers. The difference is due to dissipation as

seen in the graph for the total energy. When the drops bounce back, the rate of

recovery of kinetic energy is different for all Reynolds numbers, although the differ-

ence is the smallest for the highest Reynolds numbers. Notice that for the highest

10



Reynoldsnumbersmoreenergyis dissipatedduring the reboundingstagethan during
the initial impact. This is alsoseenin Figure lla wherethe energylossduring initial
impact (up to the maximum deformation)and the total energylossarecomparedfor
the different Reynolds numbers. In figure l lb the maximum radius and the maxi-
mum deformation are plotted versusReynoldsnumber. While the maximum radius
is relatively independentof Reynoldsnumber once it is high enough, the deforma-
tion continues to increase. Overall, the collision becomesrelatively independent of
Reynolds number for the highest valuessimulated and this is also reflected by the
coefficientof restitution which is plotted in figure 1lc. The restitution coefficientand
the energy lossare computedwhen the distancebetweenthe drop center of massis
one diameter, since there is a small energydissipation after the drops separatedue
to friction from the outer fluid.

With collisionat high Reynoldsnumbersbecomingrelatively independentof Reynolds
number, the Weber numberremainsthe main controlling parameter. Its influence on
the collisions is examinedin figure 12wherethe drops areshownat severaltimes for
three different Weber numbers. In the top row the Webernumber is smaller than
in the computations in figure 3 and 4, but in the two lower rows the Weber num-
bers are larger. There are obviously considerabledifferences.For the lowest Weber
number the dropsdeformonly slightly during the collisionand return to nearly spher-
ical shapeimmediately following separation. As the Webernumber is increasedthe
deformation increasesconsiderablyand the drops becomegreatly elongatedas they
separate. The time here is scaledby the initial velocity and on this timescalethe
collision takes longer for the higher Webernumbers. Wehaverun the codeat higher
Webernumbers,but generallyfound it difficult to follow the computationsthroughout
a completebouncingdue to instabilities in the thin film nearthe centerline. Whether
this is a resolution problem or due to a physical instability has not been resolved.
The question is most likely of marginal physical relevancesincevery thin films are
likely to rupture for thesehigh Webernumbers.

The velocity of the centerof massis plotted in figure 13a. For the lowest Weber
numbersthe velocity changessmoothly from positive to negative, indicating a nearly
constant decelerationof the center of mass. As the Weber number increases,the
velocity decreasesmore rapidly, but the curve developsa kink at the point of maxi-
mum deformation, where the velocity of the centerof massremainsessentiallyzero
as the drops becomeflatter. This "waiting" becomeslonger as the Weber number
increasesand the final velocity of the drops after rebounding decreasesdue to the
larger dissipation in the moredeformeddrops. The time in figure 13ais scaledusing
the velocity of the dropsbeforecollision. In figure 13b the time hasbeenrescaledby

11



the oscillation frequencyof the drop and in this units the total collisiontime is nearly
constant!

Figure I4 showsthe forceon the symmetry planeversustime. As the Webernum-
ber increases,the drops become"softer" and the maximum lower. For the lowest
Weber number the force hasa singlemaximum, but for the higher Weber numbers
there is a largemaximum at the initial impact and anothersmalleroneasthe dropsre-
covertheir shapeand bounceback. The averageforcealsodecreasessincethe contact
time increasesand the net changeof momentum during the collision becomessmaller
sincethe final velocitiesare lower due to larger dissipation for larger deformation.

In figure 15weexaminethe energiesas a function of time for the runs in figure 12
using time units basedon the oscillation frequencyof a singledrop (as in figure 13b).
As the drops collide the kinetic energy (figure 15a) is reduced to nearly zero for all
casesbut the amount recovereddependsstrongly on the Weber number, with most
energy dissipated for high Weber numberswhere the deformations are large. This
figure shows,asdid figure 13b, that in the time units usedhere the time of collision
is relatively constant for the higher Webernumbers. Furthermore, the post collision
oscillations have nearly the sameperiod--as expected. The surface tension energy,
shown in figure 15b,actually hasa smallermaximum for the higher Webernumbers,
even though deformation is much larger, due to the increaseddissipation. The total
energy is shown in 15c. Here, it is obvious that the differencein energy lossesis
mostly due to different dissipationduring the initial deformation.

Figure 16 summarizesthe results for different Weber numbers: As the Weber
number increases,the drops deformmore and the energylossesincrease(16a), with
nearly all the initial kinetic energybeing dissipated at the highest We. The initial
losses,up to maximum deformation, are about a third of the total lossesfor low We
and increaseto about half the lossesfor high We. As the deformation and energy
dissipation increases,the restitution coefficient(16b) and the averagecollision force
(16c)decrease.The collisiontime (16d), asmeasuredin units basedon the oscillation
periodof a singledrop--and definedasthe time from whenthe dropswould first touch
if they remainedsphericaluntil the time when the dropsactually separate--decreases
slightly at low Webernumbers and then remains relatively constant at higher We.
This remarkablesimple dependencyof the collision time on We has been observed
before (seee.g. Foote, 1975). For bouncing drops the collision time is, of course,of
a critical importance, sinceit influencesnot only the total force exertedby the drop,
but may also be important for massand heat transfer. Furthermore, for coalescence
to take place it is necessarythat the collision takes sufficiently long time so that
fluid canbe drained from the film separatingthe drops. Translated into dimensional

12



variables, constant tcollision/Td means, for example, that for a given fluid and drops
size the collision time does not depend on the velocity of the drops. Low impact

velocities (low We) will lead to small deformations, and large velocities (high We) to
large deformations but the time in contact is the same. However, for the same fluids

and same impact velocities, larger drops will have a longer contact time. Similarly,

for the same size and impact velocities, drops with higher surface tension will bounce

off each other faster than low surface tension drops.

B. Coalescing drops

In the above computations we have not ruptured the layer between the drops

and therefore the drops can never coalesce. Real drops, however, generally coalesce

(bouncing is actually somewhat rare) and the interface has to be ruptured for simula-

tions of realistic collisions. Thin films usually rupture when their thickness becomes

comparable with the intermolecular spacing (about 100-400 Angstrom, see, for ex-

ample, Bradley and Stow 1978). We can not resolve the layer down to such a small

scale, although the computations in figure 3-5 suggest that the large scale motion is

well predicted and--in particular, and perhaps somewhat surprisingly--does not de-

pend on the resolution of the layer. When the layer ruptures, however, the resulting

change in the interface topology usually leads to dramatically different evolution from

when the layer is not ruptured. The theory of film rupture between bubbles or drops

is currently being developed (see e.g. Davis et al, 1989, and Yiantsios and Davis,

1991), and while it appears possible that such a theory can be combined with full

simulations, we take a more ad hoc approach here and rupture the interface at a pre-

scribed time by removing surfaces which are very close. Such instantaneous change

in topology is, of course, an approximation to what happens in reality. While the

influence of molecular forces, where the actual rupture takes place, is confined to a

small area, there generally follows an extremely rapid motion of the surrounding film

where surface tension forces pull the remaining sheets and filament together, often

leading to further rupture and the formation of small droplets. We ignore these rapid

small scale processes entirely, also throwing away any small isolated drops that may

be formed following the rupture. Modeling the rupture by a discontinuous change in

the structure of the interface is therefore a little like modeling a shock wave by a dis-

continuity. Although this "shock" is in time, rather than space, the analogy is made

even more appropriate by the fact that usually the topology change is accompanied

by a loss of surface and total energy.

In figure 17 we show the same collision as in figure 3 and 4 where the interface

is ruptured once the drops are close enough. In (a) the film is ruptured at time
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0.4 by simply removing the double interface, leaving a single drop with indented

waist. Surface tension pulls this indentation outward initially, but after the drop

has reached its maximum deformation, surface tension pulls the waist inward and the

drop elongates before starting to oscillate around the spherical equilibrium shape. The

sensitivity of the evolution to the exact instance of rupture can be seen by comparing

the frames in (a) to the frames in (b) where the interface is ruptured at a later time.

The evolution is comparable to the previous case, but the maximum deformation

is smaller. Figure 18 shows the evolution of the energies for the runs in figure 17,

as well as the run in figure 3 when no rupturing takes place. As the interface is

ruptured, considerable surface area disappears and there is therefore a discontinuous

reduction in the surface energy (as well as the total energy). In reality this energy

is dissipated when the ruptured film breaks into small drops or is stored as surface

energy of these small drops, but here the film is simply removed. The kinetic energy

is, of course, unchanged by the rupture, but its subsequent evolution is different than

in the non-rupturing case. Notice that in (b) there is a larger energy loss and that

the post-coalescence oscillations are smaller than in (a).

We have repeated the computations in figure 12, where the Reynolds number is

held constant (Re=100) and the Weber number varied, and ruptured the film between

the drops at a predetermined nondimensional time (t=0.2). This early time was

selected to minimize energy losses due to coalescence and since a well defined layer

had formed at this stage so that removing it did not alter the total volume of the

drop by any significant amount. For the We numbers simulated (up to 100) the drops

coalesce permanently and figure 19a compares the maximum radius for these cases

to the results where the drops bounce. When coalescence takes place, the maximum

radius is larger. However, since some energy is lost when the thin film is removed,

the maximum surface energy (19b) is smaller than for bouncing drops.

Another simulation, for more energetic drops (Re=140, We=65) is shown in figure

20 where we show the evolution following rupture for two different rupture times. In

all cases the drops continue to become flatter, followed by a recovery that leads to a

large elongation of the drop. For the first case where rupture is at an early time this

elongation leads to a break up of the drop into two drops, but when the rupture is

later this break up does not take place. In figure 21, the energies are plotted versus

time. As the film is ruptured, there is a drop in surface energy and therefore total

energy. Surface energy drops slightly following the rupture as the cusp left by the

rupture is pulled back. The rate of decrease of kinetic energy is slowed, but not

reversed, suggesting that considerable dissipation is taking place. As the combined

drop continues to deform, surface energy increases again, reaching maximum where
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the kinetic energyis minimum. Notice that the maximum is considerablylater than
when the interfaceis not ruptured. When the interfaceis ruptured earlier, the lossin
energy is smaller, the maximum kinetic energywhen the drop recoversits spherical
shapeis larger and subsequently,the surfaceenergyat late time, when the kinetic
energyhas becomenearly zero is slightly larger. This suggeststhat if the drops are
allowedto coalesceearlier, a secondaryseparationwill take placemoreeasily.

We have also conducteda few simulations at even higher Reynolds and Weber
number. Figure 22 showsthe evolution of the interface for Re=185 and We=115
wherethe interface is ruptures at t=0.2. After coalescenceand the initial formation
of a flat "disk" the drops stretch apart, forming a chain of three nearly equal sized
drops. Here, we have removedthe filament connectingthe drops after stretching,
thus againmodeled rupture. The sizeof the middle drop is considerablylarger here
than in figure 20. In experiments,severaldrops areoften formed for more energetic
collisions.

IV. DISCUSSION

In the modelingof droplet collisionsthe most basicquestionis what type of collision
will result for a given set of external parameters. Most models proposed in the
literature thereforetry to predict the boundariesbetweenthe various collisionmodes.
The simulations in the precedingsection give detailed information about both the
drop shapeand the velocity field as a function of time and can help to validate the

various hypotheses made in the construction of simple models.

Both Ashgriz and Poo (1990) and Jiang et al (1992) present simple energy argu-

ments to explain the outcome of drop collisions. The basic difference between these

models is that Ashgriz and Poo neglect dissipative effects whereas Jiang et al include

dissipation during deformation. For drops that coalesce, Jiang et al (1992) argue that

the dissipation up to maximum deformation is independent of the viscosity of the

fluid and that most of it takes place in a thin layer near the contact plane between

the drops.

/,From figure 10 and 11 we see that while the collision becomes relatively indepen-

dent of the Reynolds number as Re increases, the energy dissipation does not go to

zero. Indeed, there seems to be some support for the assertion that the energy loss

(particularly during the initial deformation) becomes independent of the Reynolds
number. To examine this in a more detail, We plot the dissipation per unit volume
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for selectedtimes and three different Reynoldsnumbersin figure 23. The times were
selectedwhere the dissipation is high during the initial impact (t=0.2) and during
rebound (t=l.2). The figure showsthat the maximum dissipationdoesnot take place
in a thin layer near the stagnationpoint, asassumedby Jiang et al, but near the outer

edge of the drop where the streamlines are turning outward. However, although the

maximum dissipation is occurring in a different place than they assumed, the rest of

their argument seems to be supported by the plot. While the contour plots for the

highest Reynolds numbers, at t=0.2, are not identical, they are considerably closer to

each other than to the plot for the lowest Reynolds number, thus suggesting some level

of convergence. We note that this is actually a more stringent test than the argument

of Jiang et al requires; here we are comparing the point-wise dissipation whereas their

discussion is based on the integrated value. Similar trend is seen during the rebound

stage (t=l.2) where the maximum dissipation takes place near the symmetry line

away from the contact plane where the streamlines converge. Overall, the dissipation

is not as localized as during the initial deformation and the differences between the

plots for the highest Reynolds numbers are greater. Although energy dissipation

during collision may become independent of Reynolds number for Re _ oo, we note

that for coalescing drops, any excess energy must be dissipated by oscillations and

the decay thus depend on Re.

The dissipation of energy has a significant influence on the evolution of the drops

after initial contact. In particular, large dissipation reduces the maximum deforma-

tion. An upper bound on the maximum surface area can be easily determined (see

e.g. Jiang et al, 1992): Since kinetic energy is converted into surface tension energy

during collision, the surface area is maximum if no energy is lost and all the initial

kinetic energy is converted into surface tension energy

1

-_MdV 2 + O'So = aS_,:.

Here, we ignore the outer fluid completely. Md is the mass of a single drop and So

and S,_, are the initial and maximum surface area, respectively. Assuming the drops

to be spherical initially, and using the definition of the Weber number this can be
written as

Srnax 4_rrapV 2 We
-1+ -1+_

So 23cr47rr 2 48

This line is plotted in figure 24 for both the bouncing drops in figures 12-16 and

the coalescing drops in figure 19. In both cases the maximum surface area is not

achieved due to dissipation of energy. Since the interface is ruptured at a constant

nondimensional time based on d/V (not oscillation period, rd) the drops are slightly
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more deformedwhenthe film is ruptured at higherWebernumbersand the difference
betweenbouncing and coalescingdrops thereforeincreaseswith We. In addition to
our numerical results, wehave alsoplotted data from Jiang et al (1992) in figure 24.

The dotted line is a straight line fit to their data points. Overall there is a reasonable

agreement (the data is, for example, bounded by our bouncing drops), but the slope

of the experimental data is somewhat different than either of our curves. We expect

that this is due to differences in the time of film rupture. At low Weber number,

when the velocities are low, the time it takes to drain the film is likely to be long

and losses due to rupture large. At higher We the opposite appears to hold. We note

also that Jiang et aI had to estimate the surface area from measurements of the drop

radius, and some of the differences could be due to inaccuracies in this estimate.

Computations at high Re and We require fine resolution and long computational

time. We have therefore simulated only a few cases for reflective collisions, defined as

when the drops separate following an initial coalescence. Using these few runs and

experimental data from the literature we show, in figure 25, the boundaries between

coalescence and reflective collisions in the Re-We plane. The crosses, that are con-

nected by a solid line, are obtained from the data presented by Jiang et al (1992) and

the line to the far right is from the high Reynolds number experiments of Ashgriz and

Poo (1990). The circles represent our simulations. Open circles show a coalescence
collision and filled circles stand for reflective collisions. In most cases the interface

was ruptured at t=0.2. The experimental data does not extend to low Reynolds num-

bers but our numerical data suggest--as one might expect--that reflective collisions

do not take place at low Reynolds numbers. Although the comparison can only be

qualitative---we do not, after all, have a physical model for the rupture time--the

agreement is good where we have data and the numerical results suggest a natural

extension of the experimental results to low Reynolds numbers.

While the limited number of computations that we have done for reflective colli-

sions does not allow us to draw general conclusions, the plot of the energies in figure 21

suggest a relatively simple criteria for separation following initial coalescence: Com-

paring the two graphs, we see that the surface tension energy during rebound exceeds

that of two drops (the horizontal line) in (a) where the drops separate, but in (b)

where the drops do not separate, the losses are sufficiently large so that surface ten-

sion energy does not exceed that of two isolated drops. We therefore suspect that the

drops will split if the losses due to coalescence and deformation are sufficiently small,

or that
"1

2(2MdV2 + aSo) - ¢ > 2aSo

where So is the surface area of a single spherical drop and ¢ is the total losses due
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to both viscousdissipation and interface rupture. While the viscouslossesare fully
predicted by our computations, the lossesdueto rupture requireaccurateinformation
about the time of rupture.

V. CONCLUSIONS

The computations of head-on collisions of two drops of equal size presented here

are, in many ways, quite similar to those of Foote (1975) almost twenty years ago.

Indeed, we have used many of the same diagnostics as those presented by Foote and

been guided by his observations. We have, of course, been able to extend both the

resolution of the calculations and the range of parameters examined. In particular,

we have simulated much higher Weber numbers. We have also examined the effect

of rupturing the interface between the drops at predetermined times and allowing
coalescence. While these studies are not exhaustive and suffer from the lack of a

physics based model for the rupture time, they show both that such a model is needed,

and that the rest of the computations is under good control. While the details of the

rupturing remain unresolved, the computations suggest that since the evolution is

relatively insensitive to the resolution of the layer between the drops, the drainage

process before rupture is primarily a one-way coupling in the sense that while the

drop behavior affects the draining, the exact film behavior has minimal impact on

the drop. The rupture time, on the other hand, is critical to the continuing evolution

of the drop, and depends on how fast the film is drained. These observations suggest

that a subgrid model, which takes in the pressure and velocity of the drop fluid and

predicts the rupture time, which is the only information returned back to the drop

simulations, would give a procedure that had a fully predictive capability. Such a

subgrid model for the rupture, that is suitable for our approach, has been presented

by Jacqmin and Foster (1993), but has not been incorporated into our code yet. We

note that accurate prediction of the time of rupture requires careful tracking of the

front and that numerical techniques that relay on grid based reconstruction of the

interface (such as the Volume-of-Fluid method) are not able to predict the delay in

rupture due to a finite drainage time.

The simulations presented here are only a first step in a comprehensive numerical

study of droplet collisions. Both a reliable rupture model and fully three dimensional

simulations will be required before a complete insight and predictive capability are

in place. Both extensions appear to be within sight. The subgrid model of Jacqmin

and Foster (1993) was mentioned above; preliminary three-dimensional simulations

are presented by Nobari and Tryggvason (1993).
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Figure 1: The computational setup. The axisymmetric domain is bounded by full-slip

walls and resolved by a regular grid.
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Figure 2: Comparison with analytical predictions. Oscillations of a single drop. The

computed oscillation frequency is 3.77. Linearized theory gives wth = 3.88 for completely

inviscid drops. The rate of decay is also compared with the approximate theory of Lamb.
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Figure 3: Collision of two drops. We = 32, Re = 98, Pd/Po = 15, #d/#o = 350. The

nondimensional time (scaled by the initial velocity and the drop diameter) is noted in

each frame. The grid used here is 64 × 256 meshes.
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Figure 4: Resolution test. Selected frames from the computation in Figure 3 (left half)

are compared with results obtained on twice as coarse grid (right half). The evolution

on the coarser grid is slightly slower than on the finer grid.
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Figure 5a: Diagnostics for the simulations in Figures 3 and 4. The position of the center

of mass of the drops versus time. The horizontal line marks the distance when the centers

are one diameters apart.

3.0

"velocity

,i{l<_7_) 2.0 3.00

Figure 5b: The velocity of the center of mass of the drops versus time.

24



8.0 2.00

Def. Diameter

1.00

Figure 5c: "Deformation" of the drop versus time (solid line) and maximum diameter

(dashed line).
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Figure 5d: Kinetic energy, surface tension energy and total energy versus time
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Figure 5e: The pressure force on the symmetry plane as a function of time. The horizontal

line is the average force.
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Figure 6: Velocity vectors inside the drops (left half) and streamlines (right half) for

selected frames from the computations in figure 3.
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Figure 7: The pressure for selected frames from the computations in figure 3. Notice

that the vertical scale is different in each frame. The times are the same as in figure 6.
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Figure 8a: The radial position of the outer edge of the contact plane between the drops

as a function of time.
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Figure 8b: Pressure on the symmetry plane between the drops as a function of radius for
several times.
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Figure 8c: Radial velocity on the symmetry plane between the drops as a function of
radius for several times.
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Figure 9: Selected frames for the collision of two drops at We = 30, Pd/Po = 15, #d/Yo =

350, and different Reynolds numbers. The nondimensional time (based on initial velocity

and drop diameter)is noted on each frame. (a) Re = 28. (b) Re = 58. (c) Re = 120.
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Figure 10a: Kinetic energy for the runs in figure 9 and 3 versus time.
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Figure 10b: Surface energy for the runs in figure 9 and 3 versus time.
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Figure 10c: Total energy for the runs in figure 9 and 3 versus time.
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Figure lla: Diagnostics for the simulations in Figure 9 and 3. Loss of energy versus

Reynolds number. The lower line shows the loss in total energy during first half of the

collision (up to maximum deformation) and the top line shows the total loss during the

collision.
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Figure l lb: Maximum deformation (solid line) and maximum radius (dashed line) versus
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Figure 11c: Coefficient of restitution versus Reynolds number.
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Figure 12: Selected frames for the collision of two drops at Re = 96, Pd/Po = 15,

#d/#o = 350, and different We. The nondimensional time (based on initial velocity and

drop diameter)is noted on each frame. (a) We = 13. (b) We = 66.9. (c) We = 112.
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Figure 13a: Velocities versus time for the runs in Figures 12 and 3 versus nondimensional

time. Time is nondimensionalized by the initial velocity of the drop and its diameter.
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Figure 15a: Kinetic energy for the runs in Figures 12 and 3 versus time.
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Figure 15b: Surface energy for the runs in Figures 12 and 3 versus time.
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Figure 15c: Total energy for the runs in Figures 12 and 3 versus time.
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Figure 16a: Diagnostics for the simulations in Figures 12 and 3. Loss of energy versus

Weber number. The lower line shows the loss in total energy during first half of the

collision (up to maximum deformation) and the top line shows the total loss during the

collision.
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Figure 16b: Coefficient of restitution versus Weber number.
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Figure 16c: Average collision force versus Weber number.
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Figure 16d: Time of collision in units of period of oscillation of a single drop versus

Weber number.
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Figure 17: The evolution following rupture of the interface separating the drops for the

simulation in Figure 3. In both cases the drops coalesce permanently. (a) Rupture at

t = 0.4. (b) Rupture at t = 0.6.
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Figure 18a: The energy versus time for the simulations in figure 17a.
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Figure 18b: The energy versus time for the simulations in figure 17b.
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Figure 19a: The evolution following rupture of the interface separating the drops at

t = 0.2 for Re = 98, Pd/Po = 15, and #d/#o = 350 (same conditions as in figure 12). The

maximum radius versus Weber number.
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Figure 19b: The maximum surface tension energy versus Weber number.
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Figure 20: The evolution following rupture of the interface separating the drops for

We = 65, Re = 140, Pd/Po = 15, and #d/#o = 350. In (a) the drops eventually separate

again, following initial coalescence, but in (b) the drops remain one. (a) Rupture at

t = 0.2. (b) Rupture at t = 0.5.
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Figure 21a: The energy versus time for the simulations in figure 19a as in Figure 20.
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Figure 21b: The energy versus time for the simulations in figure 19b as in Figure 20.
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Figure 22: The evolution following rupture of the interface separating the drops for

We = 115, Re = 185, Pd/Po = 15, and #d/#o = 350.
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Figure 23: Dissipation per unit volume for bouncing drops, t=0.2 for the left column

and t=l.2 for the right column. Re=58 for the top row; Re=98 for the middle row; and

Re=123 for the bottom row.
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Figure 24: Maximum surface area. The top line is the theoretical prediction for no losses.

The solid line is for bouncing drops and the dashed line is for drops that coalesce. The

dash-dot line is a best fit to experimental data from Jiang et at.
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Figure 25: The boundaries between coalescing and separating collisions in the Re-We

plane. Open circles are computations where the drops coalesced permanently, dark circles

are computations where the drops separated again. The solid line is data from Jiang et

al (1992) and the dashed line is an extrapolation based on the computational results.
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